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Abstract: We derive analytical solutions of the steady state magnetic field
due to a direct current source on three types of heterogeneous earth structures
whose conductivities vary exponentially, linearly and binomially with depth.
The Hankel transform is introduced to our problems and analytical results are
obtained. Our solutions are achieved by solving a boundary value problem
in the wave number domain and then transforming the solution back to the
spatial domain. An inverse problem via the use of the Levenberg-Marquardt
optimization technique is introduced for finding the conductivity parameters of
the ground. The optimal result of our model is close to the true value with
percentage errors of our two conductivity parameters less than 2.5% and 4.3%
after using only 9 iterations.
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1. Introduction

The traditional resistivity method maps the electrical properties of the earth by
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measuring the differences in potential at the earth’s surface caused by galvanic
current flow between two current electrodes. Many authors have investigated
the nature of the resistivity response resulting from a direct current source
on a heterogeneous ground whose conductivities vary continuously with depth.
Stoyer and Wait [11] firstly considered the conductivity varying exponentially
with depth under homogeneous overburden. Banerjee et al. [2], Kim and
Lee [5] discussed the problem of a multilayered earth and derived specific case
for a two-layered model. In transitional layers, the electrical conductivity is
assumed, for simplicity, to be linearly dependent upon depth. This problem
was first treated by Mallick and Roy [7], who presented an analysis of the
problem of a two-layered earth. Koefoed [6] solved the problem with linear
change of the resistivity with depth, a type of change that seems to be more
common in nature than the type considered by Mallick and Roy. Banerjee et
al. [3] studied the conductivity in a transitional layer which is assumed to be
binomially with depth.

In this article, the electrical exploration method based on the measurement
of static magnetic fields associated with noninductive current flow between two
current electrodes on the earth’s surface is introduced. We derive analytical
solutions of the steady state magnetic field due to a direct current source on
three types of two-layered earth structures with a homogeneous overburden
in which the conductivities in a host medium vary exponentially, linearly and
binomially with depth. The Hankel transform is introduced to our problems
and analytical results are obtained. The inversion process, using the Levenberg-
Marquardt algorithm, is conducted to estimate the conductivity parameters of
the ground.

2. Model and Basic Equation

In our geometric model, a point source of direct current I is located at the
interface between two half-spaces. The half-space above the interface (z < 0)
is the region of air with conductivity approximately equal to zero, whereas the
half-space below the interface (z > 0) is a 2-layered horizontally stratified earth
with depth to the layer h (the lowermost layer extending to infinity) measured
from the ground surface. Each layer has conductivity as a function of depth,
i.e., σk (z) for layer 1 ≤ k ≤ 2. The azimuthal component of the magnetic field,
denoted by H̃, (Sripanya and Yooyuanyong [10]) can be determined by

∂2H̃

∂z2
+ σ

∂

∂z

(

1

σ

)

∂H̃

∂z
− λ2H̃ = 0. (1)
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Therefore, the magnetic field in each layer can be obtained by taking the inverse
Hankel transform (Ali and Kalla [1]) to the solution of equation (1), which
satisfies the boundary conditions presented by Sripanya and Yooyuanyong.

3. Solutions of the Problems

3.1. Exponential Profile

For an exponentially varying conductivity profile, the variation of conductivity
is denoted by

σ (z) = aeb(z−h), (2)

where a, b and h are constants, which preserve σ (z) > 0. Hence, the magnetic
field in an exponentially varying conductive ground can be written as

H (r, z) =

∫

∞

0

(

Ae(z−h)α−

+Be(z−h)α+
)

J1 (λr) dλ, (3)

where

α± =
b±

√
b2 + 4λ2

2
, (4)

A and B are arbitrary constants, which can be determined by using the bound-
ary conditions.

3.2. Linear Profile

For a linearly varying conductivity profile, the variation of conductivity is de-
noted by

σ (z) = a+m (z − h) , (5)

where a, h and m 6= 0 are constants, which preserve σ (z) > 0. Hence, the
magnetic field in a linearly varying conductive ground can be written as

H (r, z) =

∫

∞

0

(

ψ (z)

(

CI1

(

λ

̺
ψ (z)

)

+ DK1

(

λ

̺
ψ (z)

)))

J1 (λr) dλ, (6)

where

̺ =
m

a
, ψ (z) = 1 + ̺ (z − h) , (7)
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Iν and Kν are the modified Bessel functions of the first and second kinds of
order ν. The unknown coefficients C and D are arbitrary constants, which can
be determined by using the boundary conditions.

3.3. Binomial Profile

For a binomially varying conductivity profile, the variation of conductivity is
denoted by

σ (z) = a (1 + d (z − h))p , (8)

where a, h, p and d 6= 0 are constants, which preserve σ (z) > 0. Hence, the
magnetic field in a binomially varying conductive ground can be written as

H (r, z) =

∫

∞

0

(

ψ̃γ(z)

(

C̃I−γ

(

λ

˜̺
ψ̃ (z)

)

+ D̃K−γ

(

λ

˜̺
ψ̃ (z)

)))

J1 (λr) dλ, (9)

where

˜̺ = d, ψ̃ (z) = 1 + ˜̺(z − h) , γ =
1 + p

2
, (10)

C̃ and D̃ are arbitrary constants, which can be determined by using the bound-
ary conditions.

4. 2-layered Earth Models

Let us consider a 2-layered earth model. An overburden has a constant con-
ductivity a with thickness h over a host medium having continuously varying
conductivity σ as given above.

4.1. Exponential Profile

The magnetic fields in an overburden, denoted by H1, and in an exponentially
varying conductive medium, denoted by H2, can be written as

H1 (r, z) =

∫

∞

0

I

2π

λ cosh (λ (h− z))− α− sinh (λ (h− z))

λ cosh (λh)− α− sinh (λh)

× J1 (λr) dλ, (11)

H2 (r, z) =

∫

∞

0

I

2π

λe(z−h)α−

λ cosh (λh)− α− sinh (λh)
J1 (λr) dλ. (12)
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4.2. Linear Profile

The magnetic fields in an overburden and in a linearly varying conductive
medium can be written as

H1 (r, z) =

∫

∞

0

I

2π

cosh (λ (h− z))K1 (λ/̺) + sinh (λ (h− z))K0 (λ/̺)

cosh (λh)K1 (λ/̺) + sinh (λh)K0 (λ/̺)

× J1 (λr) dλ, (13)

H2 (r, z) =

∫

∞

0

I

2π

ψ (z)K1 ((λ/̺)ψ (z))

cosh (λh)K1 (λ/̺) + sinh (λh)K0 (λ/̺)

× J1 (λr) dλ. (14)

4.3. Binomial Profile

The magnetic fields in an overburden and in a binomially varying conductive
medium can be written as

H1 (r, z) =

∫

∞

0

I

2π

cosh (λ (h− z))Kγ (λ/ ˜̺) + sinh (λ (h− z))Kυ (λ/ ˜̺)

cosh (λh)Kγ (λ/ ˜̺) + sinh (λh)Kυ (λ/ ˜̺)

× J1 (λr) dλ, (15)

H2 (r, z) =

∫

∞

0

I

2π

ψ̃γ(z)Kγ

(

(λ/ ˜̺) ψ̃ (z)
)

cosh (λh)Kγ (λ/ ˜̺) + sinh (λh)Kυ (λ/ ˜̺)

× J1 (λr) dλ, (16)

where

υ =
1− p

2
. (17)

5. Numerical Experiments and Inversion Process

In our inverse model example, we simulate the reflection of magnetic radiation
data from our forward model of practical interest. The example model is a
2-layered electrically conductive earth. The overburden for our model has a
constant conductivity a with thickness h overlying the host medium having
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Model Parameters

a
(

S·m−1
)

b
(

m−1
)

h (m)

0.1 0.25 5

Table 1: Model parameters used in our sample test.

exponentially varying conductivity denoted by σ (z) = a exp (b (z − h)) with
infinite depth. The values of the model parameters are given in Table ??.
Chave’s algorithm [4] is used for numerically calculating the inverse Hankel
transform of the magnetic field solutions. The special functions are computed
by using the Numerical Recipes source codes (Press et al. [9]). Random errors
up to 3% are superimposed on the scaled magnetic fields to simulate the set
of real data. The iterative procedure using the Levenberg-Marquardt method
(Press et al. [9]) is applied to estimate the model parameters of conductivity
variation. The model parameter a is a conductivity of the earth’s surface, which
can be assumed to be known from the measurement. We start the iterative
process to find the values of the conductivity parameters with initial guess
values h = 1 m and b = 1 m−1. The inversion method leads to the optimal
values of the parameters h and b with percentage errors less than 2.5% and
4.3%, respectively, after using only 9 iterations. The graphs of the true and
estimated conductivity models are plotted as shown in Figure 1.

6. Discussions and Conclusions

Analytical solutions of the steady state magnetic field due to a direct current
source are derived for three types of two-layered earth models with a homo-
geneous overburden in which the conductivities in a host medium vary expo-
nentially, linearly and binomially with depth. The solutions (11) and (12) are
applicable to general cases in which the host medium has either constant or
exponentially varying conductivity. In transitional ground profiles, the solu-
tions (15) and (16) are generalized in all cases where the medium has constant,
linearly or binomially varying conductivity. The model of a simple case for
the ground structure is used to investigate the electrical conductivity profile.
The iterative procedure using the Levenberg-Marquardt method is applied to
estimate the model parameters of conductivity variation. The optimal result
of our model converges to the true value with percentage errors of h and b less
than 2.5% and 4.3%, respectively, after using only 9 iterations. The graphs



MATHEMATICAL MODELLING OF MAGNETIC FIELD... 43

Figure 1: Graphs of conductivity σ against depth z for our inverse
model example.

of the true and estimated conductivity models are plotted as shown in Figure
1. We clearly see that the graph of the estimated model is close to the true
model of conductivity profile. The inversion method leads to very good result
and has high speed of convergence. This illustrates the advantage in using the
Levenberg-Marquardt method which gives the result much better than using
another method of inversion (e.g., Oldenburg [8], Vozoff and Jupp [12]).
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